Lower Duwamish Waterway Slip 4 Early Action Area

Appendix B Summary of City of Seattle and King County Source Control Activities in the Slip 4 Drainage Basin

1 INTRODUCTION

The source control strategy for the Lower Duwamish Waterway (LDW) is to minimize the potential for chemicals in sediments to exceed the Washington State Sediment Management Standards (SMS) and LDW cleanup goals by identifying and managing pollutant sources. Washington Department of Ecology (Ecology) is working in concert with the members of the LDW Source Control Work Group (City of Seattle, King County, the Port of Seattle, the City of Tukwila, and the U.S Environmental Protection Agency) to achieve this goal. Controlling sources within the early action areas in the LDW is a top priority since these areas will be cleaned up first. Information in this appendix was provided by Seattle Public Utilities (SPU) (Schmoyer 2006a,b, pers. comm.; King County and SPU 2004, 2005a,b).

This appendix includes the latest available information as of this writing. King County and SPU will continue to update this information in progress reports to the agencies every 6 months.

This page intentionally left blank.

2 CITY OF SEATTLE AND KING COUNTY SOURCE CONTROL ACTIVITIES

The City of Seattle owns and operates the municipal separated storm drain system that collects stormwater runoff from upland areas and discharges to Slip 4 and the small sanitary/combined sewer system that collects municipal and industrial wastewater within the City service area. King County owns and operates the larger interceptor system that conveys wastewater to the treatment plant at West Point. The City and King County each own and operate sewer pump stations that in an emergency would discharge overflow to Slip 4.

City and County source control activities focus on reducing the amount of chemicals discharged to publicly owned storm drains and sanitary/combined sewers through business inspections and source identification/tracing work. Because there are no combined sewer overflows (CSOs) into Slip 4 and pump station emergency overflows occur infrequently, source control activities have focused on stormwater discharges. The City and County provide progress reports to the agencies every 6 months. Detailed information is available in the June 2004, January 2005, and June 2005 reports (King County and SPU 2004, 2005a,b).

2.1 BUSINESS INSPECTIONS

King County Industrial Waste and SPU are leading the joint King County-Seattle business inspection program in the LDW. Inspections are conducted under existing code authorities. Since June 2004, a total of 55 businesses (all of the airport tenants and waterfront facilities, except Boeing-owned or lease facilities) have been inspected in the Slip 4 drainage basin (46 full inspections and 9 screening inspections). Boeing facilities have not been inspected because inspectors were not granted access to these facilities.

Of the 46 sites receiving full inspections, 35 required some type of corrective action. Most of the problems found in the Slip 4 drainage were related to spill prevention and cleanup (e.g., lack of proper spill prevention and cleanup plans or inadequate employee training in spill prevention and cleanup practices). Other common problems included lack of adequate spill control materials onsite and need for cleaning of onsite drainage facilities. Inspectors requested a total of 103 corrective actions in the Slip 4 basin. Corrective actions requested are summarized in Table B-1.

As of December 2005, 88 percent of the sites that were requested to make corrective actions have completed the required changes (King County and SPU 2005b). Inspectors are working with the three remaining facilities to obtain compliance.

2.2 SOURCE TRACING AND IDENTIFICATION

SPU and King County are conducting source tracing and identification sampling activities to support the source control efforts. Source tracing is designed to identify sources by strategically collecting samples at key locations within the drainage system. Source identification sampling focuses on product testing to determine whether specific products contain chemicals that are a concern for waterway sediment.

The following types of source samples have been collected within the Slip 4 drainage basin:

- In-line sediment traps installed in the storm drain system (10 stations)
- Catch basin and other sediment samples from upland sites (9 samples)
- In-line sediment collected from maintenance holes on the storm drain trunk lines (5 samples with duplicate analyses)
- Sediment samples from the Georgetown flume (11 samples).

Source sediment sample results are reported in Tables B-2 through B-4. The results are compared to the SMS to provide a rough indication of overall quality. The SMS establishes the sediment quality standards (SQS), which identify surface sediments that have no adverse effects on biological resources, and the cleanup screening level (CSL), which is the "minor adverse effects" level used as an upper regulatory threshold for making decisions about cleanup. It should be emphasized that the SMS do not apply to storm drain sediments. It is important to note that any comparison of this kind is most likely conservative given that sediments discharged from storm drains are highly dispersed in the receiving environment and mixed with the natural sedimentation taking place in the waterway.

2.2.1 Storm Drain Sediment Traps

In March 2005, SPU installed sediment traps at the following 10 stations in the publicly owned storm drains that discharge to Slip 4 (Figure B-1):

- SL4-T1 (MH422): 60-inch King County Airport SD #3/PS44 EOF at the downstream end of the north and central laterals.
- SL4-T2 and SL4-T2A (MH356 and MH482): 60-inch King County Airport SD #3/PS44 EOF, south lateral (downstream and upstream of the Boeing lease property).
- SL4-T3 and SL4-T3A (MH364 and MH19C): 60-inch King County Airport SD #3/PS44 EOF, central lateral#1 (downstream and upstream of the Boeing lease property).

- SL4-T4 and SL4-T4A (MH221A and MH229A): 60-inch King County Airport SD #3/PS44 EOF, central lateral #2 (downstream and upstream of the Boeing lease property).
- SL4-T5 and SL4-T5A (MH363 and MH178): King County Airport SD #3/PS44 EOF, north lateral (downstream and upstream of the Boeing lease property).
- SL4-T6: 72-inch I-5 SD at the intersection of S. Hardy Street and Airport Way S.

Traps are installed for a 4- to 6-month period to passively collect samples of suspended sediment present in the stormwater runoff. In August 2005, SPU and Boeing removed and redeployed the traps for the winter wet season.

Results from the first round of samples are provided in Tables B-2a and B-2b. Chemicals that exceeded SMS include mercury, zinc, BEHP, and PCBs. Mercury concentrations (0.1–1.12 mg/kg DW) exceeded the CSL in three traps (SL4-T1, SL4-T5, and SL4-T5A) and zinc (220–553 mg/kg DW) exceeded the SQS in 3 traps (SL4-T4A, SL4-T5, and SL4-T6). TOC was not analyzed in all samples because of low sample volumes and so comparisons with SMS for organic compounds could only be performed on three of the sediment trap samples (SL4-T1, SL4-T4A, and SL4-T6). BEHP (49–189 mg/kg OC) exceeded the SMS in all three samples (two SQS exceedances and one CSL exceedance).

PCBs were detected in all 10 traps at concentrations ranging from 0.04 to 24 mg/kg DW and exceeded the MTCA Method A cleanup level for residential soil of 1 mg/kg DW in five traps. Due to limited sample volume, TOC analysis was performed in only three samples, and therefore only these samples could be compared to the SMS. Two of the three samples (SL4-T1 and SL4-T6, 233 and 246 mg/kg OC PCBs, respectively) exceeded the CSL for PCBs.

2.2.2 Inline Sediment Samples

In addition to the sediment trap samples, SPU collected inline sediment samples at four of the stations where traps were deployed and one additional maintenance hole at the downstream end of the flume (MH100). Duplicate samples were collected at each site and split with Boeing. Inline samples are grab samples collected from sediment that has deposited in the storm drain line, typically at maintenance holes or other areas where sediment accumulates. Inline sediment data are provided in Tables B-3a and B-3b. Sampling locations are shown on Figure B-1.

Chemicals exceeding SMS included mercury, zinc, acenaphthene, fluorene, phenanthrene, benzo [b+k]fluoranthene, benzo[g,h,i]perylene, fluoranthene, , indeno[1,2,3-c,d]pyrene, BEHP, and PCBs. Mercury (0.48/0.7 mg/kg DW) exceeded the CSL in split samples at MH363, while zinc (411 and 572 mg/kg DW) exceeded the SQS at MH100 and MH221A and the CSL (699/1,130 mg/kg DW) in split samples at MH229A.

Concentrations of PAH compounds exceeded the SQS in only one of the two split samples at MH229A and MH221A

BEHP concentrations in the Slip 4 inline sediment samples (180–2,200 μ g/kg DW) were relatively low compared to other source sediment samples collected in the Lower Duwamish Waterway (<20–26,000 μ g/kg DW). However, samples from three of the five locations (MH221A, MH363, and MH229A) exceeded the SQS.

PCBs were detected at four of the five inline sample locations (0.31–31 mg/kg DW), exceeding the SQS at one location (MH100) and the CSL at three locations (MH221A, MH363, and MH229A). MH363 contained the highest concentration of PCBs (31 mg/kg DW or 2,793 mg/kg OC), consisting of Aroclor 1254, although the detection limits for other Arcolors in this sample were relatively high (0.47–3.8 mg/kg DW or 42–342 mg/kg OC). Aroclors 1254 (0.15–3.7 mg/kg DW, 3–96 mg/kg OC) and 1260 (0.16–1.9 mg/kg DW, 4–53 mg/kg OC) were present in the other three locations where PCBs were detected.

2.2.3 Catch Basins and Other Source Sediment Samples

SPU has collected sediment samples from eight catch basins and one upland site drainage ditch in the Slip 4 drainage basin (Figure B-1):

- CB37: Located on the Crowley property and drains directly to Slip 4
- **CB44**: Located in a parking area on S. Myrtle Street that drains to the Georgetown flume
- CB45 and CB46: Located at the King County maintenance facility on the north end of the airport. CB45 drains to the I-5 SD, and CB46 drains to the King County Airport SD #3/PS44 EOF
- **CB48**: Located on the west side of the Georgetown Steam Plant and drains to the Georgetown flume
- **CB79 and CB80:** Oil/water separator and catch basin, respectively. Both are located on Emerald Services property at head of Slip 4. CB79 drains directly to Slip 4, and CB80 drains to the combined sewer on E. Marginal Way South.
- **RCB49**: Located on S. Webster Street on the east side of Slip 4 and drains to the combined sewer on E. Marginal Way South.
- **S1**: Drainage ditch on Emerald Services property and drains to Slip 4. Results for this soil sample are discussed in Section 2.3.2.2 of the main text.

The catch basin sampling results are summarized in Tables B-4a and B-4b. Chemicals exceeding SMS include copper, lead, zinc, fluorene, phenanthrene, benzo(a)anthracene, benzo(a)pyrene, benzo(b+k)fluoranthenes, benzo(g,h,i)perylene, chrysene, dibenz(a,h)anthracene, fluoranthene, indeno[1,2,3-c,d]pyrene, BEHP, butylbenzylphthalate, dimethylphthalate, di-n-octylphthalate, and PCBs.

Zinc exceeded the CSL in the two catch basins at the King County maintenance facility (3,420–3,530 mg/kg) and the Crowley catch basin (1,220 mg/kg DW). Zinc also exceeded the SQS in the samples collected from the S. Myrtle Street drain (524 mg/kg DW), the steam plant catch basin (657 mg/kg DW), and the oil/water separator (CB79) on the Emerald Services site (758 mg/kg DW). The highest concentrations were found in the two King County Airport catch basins, which are on a drain line that receives runoff from a metal finishing facility. Copper (5,660–6,320 mg/kg DW) also exceeded the CSL in these two catch basins, and lead (481 mg/kg DW) exceeded the SQS in one catch basin (CB45). The airport has since cleaned these catch basins and is planning to install outlet traps on appropriate catch basins (King County and SPU 2005b).

PAH concentrations were also elevated in the two catch basins at the King County maintenance facility, with exceedances of the SQS or CSL for several HPAH compounds and exceedances of SQS for two LPAH compounds. CB48 at the Georgetown Steam Plant also contained elevated concentrations of PAH (one LPAH and five HPAH compounds exceeded the SQS).

The highest BEHP concentrations (exceeding CSL) were found in samples collected on the Emerald Services site (5,500–120,000 μ g/kg DW, 177–1,869 mg/kg OC) and the two catch basins at the King County maintenance facility (8,800–30,000 μ g/kg DW, 90–288 mg/kg DW). CB79, also on the Emerald Services site, exceeded the SQS for dinoctylphthalate (62 mg/kg OC). In addition, CB80 exceeded the CSL for butylbenzylphthalate (1,800 μ g/kg DW, 67 mg/kg OC) and dimethylphthalate (1,900 μ g/kg DW, 71 mg/kg OC), as well as the SQS for di-n-octylphthalate (1,800 μ g/kg DW, 67 mg/kg OC).

Concentrations of PCBs (<0.1–0.68 mg/kg DW) in all nine samples were below the MTCA Method A limit (1 mg/kg DW). However, CB48 at the Georgetown Steam Plant (0.25 mg/kg DW, 15.9 mg/kg OC) exceeded the SQS.

2.2.4 Georgetown Flume

SPU also investigated the Georgetown flume in 2005 (HEC 2005). As part of the investigation, the flume was surveyed and inspected and illicit connections identified. In addition, sediment samples were collected from the flume at five evenly spaced transects and adjacent to five pipe connections (see Figure B-1). Duplicate samples (T2 and T5) were obtained at the S. Myrtle Street sampling location. Sample results are presented in Tables B-3a and B-3b.

Lead (590J mg/kg DW), mercury (1.7 mg/kg DW), and zinc (1,130 mg/kg DW) exceeded the CSL at the steam plant (uppermost end of the flume). Lead (501 mg/kg DW) and zinc (766 mg/kg DW) concentrations exceeded the SQS and mercury (1 mg/kg DW) exceeded the CSL at the downstream end of the tunnel section (below the steam plant). TPH-oil was elevated at the steam plant (9,700 mg/kg DW) and in the drainage ditch that runs along the north side of S. Myrtle Street (3,000 mg/kg DW). In addition, TPH-diesel (2,300 mg/kg DW) was elevated at the steam plant.

BEHP concentrations were generally low in the flume samples (120–3,800 μ g/kg DW, 2–75 mg/kg OC), with only 3 of the 11 samples exceeding the SQS.

PCB concentrations exceeded the SMS at multiple locations along the flume, ranging from 5 to 1,746 mg/kg OC (0.038–92 mg/kg DW). Of the 10 flume sediment samples, two samples exceeded the CSL for PCBs (T3 and P3), and four samples exceeded the SQS for PCBs (T4, T6, P1, and P2). In addition, the sample collected from the ditch entering the flume at S. Myrtle Street (P5) also exceeded the SQS for PCBs (1.5 mg/kg DW, 22 mg/kg OC). PCB concentrations (0.78–92 mg/kg DW) were generally higher at the upper end of the flume (above S. Willow Street) compared to the downstream end (0.065–0.4 mg/kg DW). The highest concentration (92 mg/kg DW/1,746 mg/kg OC) was observed adjacent to the 15-inch storm drain (P3) that enters just downstream of the tunnel section. This storm drain is now plugged. The P3 sample contained only Aroclor 1254. Other samples generally contained a mixture of Aroclor 1254 and 1260, with some samples also containing Aroclor 1248.

Inspectors found six unplugged pipes entering the flume during the field investigation. Four pipes, ranging in size from 3 to 8 inches, enter along the west side of the flume and appear to be private outfalls from adjacent properties. One 4-inch PVC pipe is an illicit connection from a motel's laundry system. The laundry cannot be replumbed to the motel's existing septic system because it is not capable of handling the additional flow from the laundry. There are no sanitary sewer lines near the property. Consequently, the motel has since stopped using this system and now sends all laundry offsite for washing. Another pipe (8-inch concrete) is a storm drain that serves the properties along the south side of S. Myrtle Street. The source of the remaining four pipes is unknown.

Two pipes (6–8 inches) enter the flume from the east side. One of these pipes enters along the piped section located between about S. Willow Street and the tunnel, and the other enters in the concrete-lined section about 100 feet upstream of S. Willow Street. The source of these two pipes is unknown.

Seattle City Light and SPU are currently investigating options for removing the PCB-contaminated material, as well as long-term operation of the flume. Options being considered include permanently closing the flume and rerouting drainage to other nearby storm drain systems or installing a new piped storm drain along the flume

alignment and backfilling the flume. The City intends to complete this work in 2007-2008.

Table B-1. Corrective Actions Requested of Businesses in Slip 4 Basin (June 2004—December 2005).

Corrective Action	Percentage of Sites ^a
Facility lacks proper spill prevention/cleanup plan/procedures	24
Inadequate employee training on spill prevention/cleanup practices	21
Inadequate spill cleanup materials available onsite	15
Drainage facility needs cleaning	13
Improper storage of hazardous products and waste materials	6
Improper hazardous waste disposal	6
Improper outdoor storage of nonhazardous materials/products	5

^a Reported as percentage of total sites inspected. Note that not all sites had corrective actions and some sites had multiple corrective actions; therefore, percentages do not total 100%.

Table B-2a: Slip 4 Drainage Basin Sediment Trap Results (mg/kg DW).

Seattle Public Utilities ID	SL4-T1	SL4-T2A	SL4-T2	SL4-T3A	SL4-T3	SL4-T4A	SL4-T4	SL4-T5A	SL4-T5	SL4-T6
King County/Boeing MH#	MH422	MH482	MW356	MH19C	MH364	MH229A	MH221A	MH178	MH363	NA
	KC Airport SD,	KC Airport SD,	KC Airport SD,	KC Airport SD,	KC Airport SD,	KC Airport SD,	KC Airport SD,	KC Airport SD,	KC Airport SD,	I-5 SD at Airport
	north + central	south lat, d/s	south lat, d/s	central lat #2,	central lat #2, d/s	central lat #1, d/s	central lat #1, d/s	north lat, d/s	north lat, d/s	Way S
	#1 lat	runway	Boeing Field	d/s runway	Boeing Field	runway	Boeing Field	Steamplant	Boeing Field	
	Round 1	Round1	Round 1	Round 1	Round 1	Round 1	Round 1	Round 1	Round 1	Round 1
Date deployed		03/10/05	03/07/05	03/10/05	03/07/05	03/08/05	03/08/05	03/08/05	03/07/05	
Date removed	08/11/05	08/11/05	08/11/05	08/11/05	08/11/05	08/11/05	08/11/05	08/11/05	08/11/05	08/11/05
Sample collected by	Boeing	SPU	Boeing	SPU	Boeing	Boeing	Boeing	Boeing	Boeing	SPU
TOC (percent)	4.29	NA	NA	NA	NA	5.35	NA	NA	NA	3.17
Metals (mg/kg DW)										
As	11	NA	NA	NA	NA	16	NA	14	21	11
Cu	83.6	NA	NA	NA	NA	94.3	NA	113	148	84.5
Pb	140	NA	NA	NA	NA	144	NA	962	109	110
Hg	1.10	NA	NA	NA	NA	0.19	NA	0.86	1.12	0.10
Zn	368	NA	NA	NA	NA	460	NA	220	553	422
LPAH (ug/kg DW)										
Acenaphthene	210	NA	NA	NA	NA	160 U	1,300	110 U	130 U	79 U
Acenaphthylene	100 U	NA	NA	NA	NA	160 U	210 U	110 U	130 U	79 U
Anthracene	360	NA NA	NA	NA	NA NA	180	1,500	150	210	98
Fluorene	190	NA	NA NA	NA NA	NA NA	160 U	1,000	110 U	130 U	79 U
Naphthalene	100 U	NA	NA NA	NA NA	NA NA	160 U	670	110 U	130 U	79 U
Phenanthrene	2,800	NA	NA	NA	NA	1,700	8,600	1,300	1,600	570
HPAH (ug/kg DW)	4 400	A14	N14	A1.A	110	200	2.000	040	0.10	070
Benzo(a)anthracene	1,400	NA NA	NA NA	NA NA	NA NA	860	3,000	840	940	270
Benzo(a)pyrene Benzo(b)fluoranthene	1,700 2,400	NA NA	NA NA	NA NA	NA NA	1,400 2,100	3,400 4,600	1,100 1,600	1,200 1,700	250 380
Benzo(k)fluoranthene	1,300	NA NA	NA NA	NA NA	NA NA	1,300	2,600	800	970	220
Benzo(g,h,i)perylene	720	NA NA	NA NA	NA NA	NA NA	710	1,600	450	600	79 U
Chrysene	1,900	NA NA	NA NA	NA NA	NA NA	1,700	4,100	1,200	1,400	370
Dibenzo(a,h)anthracene	260	NA NA	NA NA	NA NA	NA NA	1,700 160 U	730	110 U	130 U	79 U
Fluoranthene	4,100	NA NA	NA NA	NA NA	NA NA	3,100	8,900	2,400	2,900	880
Indeno(1,2,3-c,d)pyrene	810	NA NA	NA NA	NA NA	NA NA	780	1,900	520	680	84
Pyrene	3,000	NA NA	NA NA	NA NA	NA NA	2,100	6,800	1,700	2,000	630
Phthalates (ug/kg DW)	0,000					2,.00	5,555	.,	2,000	
Bis(2-ethylhexyl)phthalate	2,400	NA	NA	NA	NA	2,600	6,000	1,800	2,700	6,000
Butylbenzylphthalate	120	NA	NA	NA	NA	160 U	210 U	110 U	140	420
Diethylphthalate	100 U	NA	NA	NA	NA	160 U	210 U	110 U	130 U	79 U
Dimethylphthalate	100 U	NA	NA	NA	NA	160 U	210 U	110 U	130 U	79 U
Di-n-butylphthalate	130	NA	NA	NA	NA	350	260	150	130 U	460
Di-n-octylphthalate	440	NA	NA	NA	NA	4,300	3,700	220	1,200	430
PCBs (ug/kg DW)										
Aroclor 1016	29 U	48 U	21 U	34 L	20 U	9.8 U	9.8 U	9.6 U	49 U	1,800 U
Aroclor 1242	29 U	48 U	21 U	34 L		9.8 U	9.8 U	9.6 U	49 U	1,800 U
Aroclor 1248	29 U	48 U	21 U	34 L		9.8 U	9.8 U	9.6 U	49 U	1,800 U
Aroclor 1254	10,000	67	500 P	38 J		290 P	1,900 P	72	24,000	1,800 U
Aroclor 1260	1,200 U	110	340	34 U		160	850	34	2,400 U	7,800
Aroclor 1221	29 U	48 U	21 U	34 U		9.8 U	9.8 U	9.6 U	49 U	1,800 U
Aroclor 1232	29 U	48 U	21 U	34 U		9.8 U	9.8 U	9.6 U	49 U	1,800 U
Total PCBs	10,000	177	840 P	38 J	P 1,400	450 P	2,750 P	106	24,000	7,800
TPH (mg/kg)										
Diesel	230	NA	NA	NA	NA	100	NA	160	390	310
Motor Oil	970	NA	NA	NA	NA	410	NA	570	1,400	800
	·	Detected values show	n in bold type.		·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	·	·	·

NA = not analyzed

Exceeds SQS (0.41 mg/kg mercury, 410 mg/kg zinc) or MTCA Method A soil cleanup level for unrestricted use (1 mg/kg PCBs) Exceeds CSL (0.59 mg/kg mercury) or MTCA Method A soil cleanup level for industrial use (10 mg/kg PCBs)

U = Chemical not detected at reported concentration

J = Chemical concentration is reported as estimate.

P = Chemical detected on both chromatographic columns, but values differ by >40% RPD with no obvious interference.

Table B-2b: Slip 4 Drainage Basin Sediment Trap Results Compared to Sediment Management Standards.

				Slip4-T6
		MH422	MH229A	NA
SQS	CSL	KC Airport SD,	KC Airport SD,	I-5 SD at
		north + central	central lat #1,	Airport Way S
		#1 lat	d/s runway	
		Daumd 1	Dound1	Dound 1
		Rouna 1		Round 1
		09/11/05		08/11/05
				06/11/05 SPU
				3.17
		4.29	5.35	3.17
57	03	11	16	
				11
				84.5
				110
				0.1 422
410	900	300	400	422
16	57			2.5 U
				2.5 U
				3.1
				2.5 U
				2.5 U
100	480	65	32	18
				8.5
				7.9
				12.0
				6.9
				11.7
				2.5 U
				27.8
				2.6
1,000	1,400	70	39	19.9
47	70	F0	40	400
				189
				13
				2 U
				2 U
				15
58	4,500	10	80	14
		4.11	0011	E7
				57 U
				57 U 57 U
				57 U
				246
				246 57 U
				57 U
10	ee.			246
12	69	255	0.4 P	240
	2000 ^a		400	310
				800
	57 390 450 0.41 410 16 66 220 23 99 100 110 99 230 31 110 12 160 34 1,000 47 4.9 61 53 220 58	390 390 450 530 0.41 0.59 410 960 16 57 66 66 220 1,200 23 79 99 170 100 480 110 270 99 210 230 450 31 78 110 460 12 33 160 1,200 34 88 1,000 1,400 47 78 4.9 64 61 110 53 53 220 1,700 58 4,500	#1 lat Round 1 08/11/05 Boeing 4.29 57 93 11 390 390 83.6 450 530 140 0.41 0.59 1.10 410 960 368 16 57 5 66 66 62 U 220 1,200 8 23 79 4 99 170 2 U 100 480 65 110 270 33 99 210 40 230 450 86 31 78 17 110 460 44 12 33 6 160 1,200 96 34 88 19 1,000 1,400 70 47 78 56 4.9 64 3 61 110 2 U 53 53 53 2 U 220 1,700 3 58 4,500 10 1 U 1 U 233 28 U 1 U 1 U 1 1 U 1 U 1 1 U 1 U 1 1 2 65 U 3 3 3 4 3 4 8 U 4 1 U 1 1 U	#1 lat Round 1 Round 1 O3/08/05 O8/11/05 Boeing Boeing 4.29 5.35

^aMTCA Method A soil cleanup level for unrestricted and industrial use.

U = Chemical not detected at reported concentration

P = Chemical detected on both chromatographic columns, but values differ by >40% RPD with no obvious interference. Exceeds SQS

Table B-3a: Slip 4 Drainage Basin inline sediment sample results (dry weight).

Slip 4 Storm Drains												
	MH100	MH100	MH221A	MH221A	MH363	MH363	MH229A	MH229A	MH32			
	North+	North+	Central lat	Central lat	North lat.	North lat.	Central lat	Central lat	I-5 SD at			
	central lat	central lat	#1, d/s	#1, d/s	d/s	d/s	#1, d/s	#1, d/s	Airport Wy			
	#2	#2	Boeing	Boeing	Steamplt	Steamplt	runway	runway				
			Field	Field			,	,				
Date	2/16/05 S	2/16/05 B	2/16/05 S	2/16/05 B	2/16/05 S	2/16/05 B	2/16/05 S	2/16/05 B	8/11/05 S			
TOC (percent)	6.11	6.6	1.09	1	1.11	0.76	4.34	3.88	0.739			
Metals (mg/kg DW)												
As	20	20	40	12	9	8	30	30	10 U			
Cu	88.9	102	126	38.5	64.1	45.1	69.7	85.5	61.2			
Pb	134	142	94	50	51	110	120	155	207			
Hg	0.2	0.2	0.09	0.09	0.48	0.7	0.07	0.07	0.05 U			
Zn	377	411	572	332	208	272	699	1,130	186			
LPAH (ug/kg DW)												
Acenaphthene	100 U	59 U	180 U	58 U	59 U	59 U	800	930	20 U			
Acenaphthylene	100 U	59 U	180 U	58 U	59 U	59 U	86	220 U	20 U			
Anthracene	100 U	140	180 U	71	65	59 U	770	1,200	20 U			
Fluorene	100 U	59 U	180 U	73	59 U	59 U	810	1,100	20 U			
Naphthalene	100 U	59 U	59 U	58 U	59 U	59 U	76	220 U	22 U			
Phenanthrene	500	250	440	300	400	260	6,100	8,900	22			
HPAH (ug/kg DW)							5,.55	5,000				
Benzo(a)anthracene	320	380	330	280	340	280	1,900	3,000	20 U			
Benzo(a)pyrene	290	480	470	400	330	300	2,000	3,400	26			
Benzo(b)fluoranthene	500	760	740	710	520	450	3,300	5,400	34			
Benzo(g,h,i)perylene	210	200	310	230	170	170	840	1,300	20 U			
Benzo(k)fluoranthene	280	460	370	400	280	310	2,000	3,600	20 U			
Chrysene	570	620	600	490	500	400	2,600	4,200	31			
Dibenzo(a,h)anthracene	100 U	59 U	180 U	58 U	59 U	59 U	370	220 U	20 U			
Fluoranthene	980	880	1,100	920	840	750	6,700	11,000	44			
Indeno(1,2,3-c,d)pyrene	240	180	380	260	190	180	980	1,500	20 U			
Pyrene	750	810	800	870	630	660	4,900	7,600	50			
Phthalates (ug/kg DW)		0.0					.,000	.,000				
Bis(2-ethylhexyl)phthalate	1,500	2,000	800	760	430	500	1,200	2,200	180			
Butylbenzylphthalate	140	86	180 U	58 U	59 U	59 U	62	220 U	20 U			
Diethylphthalate	100 U	59 U	180 U	58 U	59 U	59 U	61 U	220 U	20 U			
Dimethylphthalate	100 U	59 U	180 U	58 U	59 U	59 U	61 U	220 U	20 U			
Di-n-butylphthalate	100 U	59 U	180 U	58 U	59 U	59 U	110	220 U	20 U			
Di-n-octylphthalate	100 U	71	180 U	120	59	69	130	240	20 U			
PCBs (ug/kg DW)	100 0		100 0	120				2-17	200			
Aroclor 1016	220 U	95 U	120 U	120 U	1,200 Y	950 U	19 U	140 U	19 U			
Aroclor 1242	220 U	95 U	120 U	120 U	940 Y	950 U	19 U	140 U	19 U			
Aroclor 1248	220 U	95 U	120 U	120 U	2,400 Y	1,900 U	19 U	140 U	19 U			
Aroclor 1254	1,000	1,600	590	960	31,000	7,000	150	3,700	19 U			
Aroclor 1260	820 P	380 P	410	530	3,800 Y	950 U	160 P	1,900	19 U			
Aroclor 1220	220 U	95 U	120 U	120 U	470 U	480 U	19 U	140 U	19 U			
Aroclor 1232	220 U	95 U	120 U	120 U	1,400 Y	1,400 U	19 U	140 U	19 U			
Total PCBs	1,820 P	1,980 P	1.000	1,490	31,000	7,000	310 P	5,600	19 U			
TPH (mg/kg)	1,020	1,500	1,000	1,430	31,000	7,000	3101	3,000	13 0			
Diesel	88	40	120	120	120	47	110	200	120 U			
Motor Oil	380	190	270	210	680	190	380	1,000	290			
	300	130	210	210	300	130	300	.,000				

Exceeds SQS (450 mg/kg lead, 0.41 mg/kg mercury, 410 mg/kg zinc) or MTCA Method A soil cleanup level for unrestricted use (1 mg/kg PCBs) Exceeds CSL (530 mg/kg lead, 0.59 mg/kg mercury, 960 mg/kg zinc) or MTCA Method A soil cleanup level for industrial use (10 mg/kg PCBs)

U = Chemical not detected at reported concentration

Y = Chemical not detected at the reported concentration. Reporting limit raised due to chromatographic interference.

P = Chemical detected on both chromatographic columns, but values differ by >40% RPD with no obvious interference.

J = Chemical concentration is reported as estimate.

Table B-3a: Slip 4 Drainage Basin inline sediment sample results (dry weight).

	Georgetown Flume Samples												
	T1	T2	T5 ¹	Т3	T4	Т6	P1	P2	P3	P4	P5		
	Flume 15'	Flume at S	Flume at S	Flume	Head of	MH100 u/s	Flume off	Flume off	Flume off	Flume off	Ditch at S		
	u/s of box	Myrtle St	Myrtle St	upstream	flume	of E	of 8"	of 8" pipe	of 15"	of 8" pipe	Myrtle St		
	culvert			of S Willow		Marginal	plugged	near S	plugged	at S Myrtle			
				St		Wy S	pipe	Willow St	pipe	St			
Date	3/24/05 S	3/24/05 S	3/24/05 S	3/25/05 S	3/24/05 S	3/25/05 S	3/25/05 S	3/25/05 S	3/25/05 S	3/24/05 S	3/24/05 S		
TOC (percent)	3.92	1.43	1.17	2.25	8.71	2.68	0.711	2.47	5.27	0.773	6.86		
Metals (mg/kg DW)													
As	11	7 U	7 U	7 U	40	7 U	7 U	13	20	6 U	10 U		
Cu	63.2	18.5	20.2	54.6	314 J	79.6	18	56.6	133	12.8	95.1		
Pb	99	14	15	263	590 J	61	16	69	501	10	73		
Hg	0.1	0.05 U	0.05 U	0.41	1.7	0.08	0.05 U	0.18	1	0.06 U	0.08		
Zn	218	53.8	61.3	180	1,130	240	60.8	238	766	52.7	195		
LPAH (ug/kg DW)				·									
Acenaphthene	270	20 U	24	380	660	67	20 U	58 U	120 U	19 U	1,600 U		
Acenaphthylene	150	20 U	21	230	2,700	34 J	28	92	120 U	19	1,600 U		
Anthracene	640	53	91	590	2,500	220	97	270	130	69	1,600 U		
Fluorene	240	20 U	20 U	530	1,900	66	20 U	42 J	120 U	19 U	1,600 U		
Naphthalene	310	20 U	20 U	97	2,400	59 U	20 U	58 U	120 U	19 U	1,600 U		
Phenanthrene	4.500	44	67	6.200	11,000	740	96	250	510	140	1,600 U		
HPAH (ug/kg DW)	.,000		<u> </u>	0,200	,						1,000 0		
Benzo(a)anthracene	1,300	100	150	1,400	7,900	520	150	370	370	73	1,600 U		
Benzo(a)pyrene	1,300	240	310	490	8,600	560	130	290	450	83	1,600 U		
Benzo(b)fluoranthene	1,600	240	350	850	11,000	640	140	520	640	100	1,600 U		
Benzo(g,h,i)perylene	570	92	130	200	2,500	210	52	120	190	33	1,600 U		
Benzo(k)fluoranthene	1,600	270	290	1,000	9,400	790	230	540	500	140	1,600 U		
Chrysene	2,300	160	210	1,500	8,400	750	230	650	540	160	810 J		
Dibenzo(a,h)anthracene	230	34	41	45 J	1,000	54 J	20 U	33 J	120 U	19 U	1,600 U		
Fluoranthene	6,300	200	260	6,100	18,000	1,600	530	1,200	1,100	490	1,000		
Indeno(1,2,3-c,d)pyrene	660	91	120	220	3,000	210	57	120	210	32	1,600 U		
Pyrene	3,200	130	180	3,300	14,000	1,200	300	850	960	230	1,200		
Phthalates (ug/kg DW)	3,200	130	100	3,300	14,000	1,200	300	000	300	230	1,200		
Bis(2-ethylhexyl)phthalate	2,000	140	140	580	210	2,000	120	560	2,100	140	3.800		
Butylbenzylphthalate	110	20 U	20 U	59 U	200 U	100	20 U	58 U	160	19 U	1,600 U		
Diethylphthalate	60 U	20 U	20 U	59 U	200 U	59 U	20 U	58 U	120 U	19 U	1,600 U		
Dimethylphthalate	60 U	20 U	20 U	59 U	200 U	59 U	20 U	58 U	120 U	19 U	1,600 U		
Di-n-butylphthalate	87	20 U	20 U	60	200 U	59 U	20 U	69	140	19 U	1,600 U		
Di-n-octylphthalate	60 U	20 U	20 U	59 U	200 U	64	20 U	230	140	19 U	1,600 U		
PCBs (ug/kg DW)	00 0	20 0	20 0	วิช ป	200 0	04	20 0	230	140	18 0	1,000 0		
Aroclor 1016	59 U	7.8 U	4.0 U	2,800 U	240 U	40 U	12 U	79 U	26,000 U	3.9 U	240 U		
Aroclor 1242	59 U	7.8 U	4.0 U	2,800 U	240 U	40 U	12 U	79 U	26,000 U	3.9 U	240 U		
Aroclor 1242 Aroclor 1248	59 U	7.8 U	4.0 U	2,800 U	1.500 J	79 U	12 U 28	210	26,000 U	6.3	240 U		
Aroclor 1254	190	26 J	29 J	3,900 U	1,700	240	56 J	450	92,000	14 J	470 U		
Aroclor 1260	140	28	29 3	2,800 U	540	160	36	120	26,000 U	18	1,500		
Aroclor 1200 Aroclor 1221	59 U	7.8 U	4.0 U	2,800 U	240 U		12 U	79 U	26,000 U	7.8 U	240 U		
	59 U	7.8 U	4.0 U	,	240 U	40 U 40 U			26,000 U				
Aroclor 1232				2,800 U			12 U	79 U		7.8 U	240 U		
Total PCBs	330	66 J	65 J	3,900	3,740 J	400	120 J	780	92,000	38.3 J	1,500		
TPH (mg/kg)	20	04	40	04	0.000	400	4.4	CO	050		4.000		
Diesel	36	21	19	84 460	2,300	120	14	63	250	8.9	1,600		
Motor Oil	140	99	70	460	9,700	670	66	360	1,100	61	3,000		

¹T5 is duplicate of T2.

S = Seattle field split
B = Boeing field split

Table B-3b: Slip 4 drainage basin inline sediment sample results compared to Sediment Management Standards.

	_		-	-		Clin	4 Storm Drains				
	SQS	CSL	MH100	MH100	MH221A	MH221A	MH363	MH363	MH229A	MH229A	MH32
	SUS	USL	North+	North+	Central lat	Central lat	North lat,	North lat,	Central lat	Central lat	I-5 SD at
			central lat	central lat	#1, d/s	#1, d/s	d/s	d/s	#1, d/s	#1, d/s	Airport Wy
			#2	#2	Boeing	Boeing	Steamplt	Steamplt	runway	runway	All port Wy
					Field	Field	Otodinpit	O.Coampii	········	·········	
Date			2/16/05 S	2/16/05 B	2/16/05 S	2/16/05 B	2/16/05 S	2/16/05 B	2/16/05 S	2/16/05 B	8/11/05 S
TOC (percent)			6.11	6.6	1.09	1	1.11	0.76	4.34	3.88	0.739
Metals (mg/kg DW)											
As	57	93	20	20	40	12	9	8	30	30	10 U
Cu	390	390	88.9	102	126	38.5	64.1	45.1	69.7	85.5	61.2
Pb	450	530	134	142	94	50	51	110	120	155	207
Hg	0.41	0.59	0.2	0.2	0.09	0.09	0.48	0.7	0.07	0.07	0.05 U
Zn	410	960	377	411	572	332	208	272	699	1,130	186
LPAH (mg/kg OC)										-	
Acenaphthene	16	57	2 U	2.7 U	17 U	6 U	5 U	8 U	18	24	3 U
Acenaphthylene	66	66	2 U	2.7 U	17 U	6 U	5 U	8 U	2	6 U	3 U
Anthracene	220	1,200	2 U	2.7	17 U	7	6	8 U	18	31	3 U
Fluorene	23	79	2 U	2.7 U	17	7	5 U	8 U	19	28	3 U
Naphthalene	99	170	2 U	0.9 U	5 U	6 U	5 U	8 U	2	6 ∪	3
Phenanthrene	100	480	8	6.7	40	30	36	34	141	229	3 U
HPAH (mg/kg OC)											
Benzo(a)anthracene	110	270	5	6	30	28	31	37	44	77	3 U
Benzo(a)pyrene	99	210	5	7	43	40	30	39	46	88	4
Benzo (b+k)fluoranthene	230	450	13	18	102	111	72	100	122	232	7
Benzo(g,h,i)perylene	31	78	3	3	28	23	15	22	19	34	3 U
Chrysene	110	460	9	9	55	49	45	53	60	108	4
Dibenzo(a,h)anthracene	12	33	2 U	1 U	17 U	6 U	5 U	8 U	9	6 U	3 U
Fluoranthene	160	1,200	16	13	101	92	76	99	154	284	6
Indeno(1,2,3-c,d)pyrene	34	88	4	3	35	26	17	24	23	39	3 U
Pyrene	1,000	1,400	12	12	73	87	57	87	113	196	7
Phthalates (mg/kg OC)	,	,			-	-					
Bis(2-ethylhexyl)phthalate	47	78	25	30	73	76	39	66	28	57	24
Butylbenzylphthalate	4.9	64	2	1.3	17 U	6 U	5 U	8 U	1	6 U	3 U
Diethylphthalate	61	110	2 U	0.9 U	17 U	6 U	5 U	8 U	1 U	6 U	3 U
Dimethylphthalate	53	53	2 U	0.9 U	17 U	6 U	5 U	8 U	1 U	6 U	3 U
Di-n-butylphthalate	220	1,700	2 U	0.9 U	17 U	6 U	5 U	8 U	3	6 U	3 U
Di-n-octylphthalate	58	4,500	2 U	1.1	17	12	5	9	3	6	3 U
PCBs (mg/kg OC)		,					-	-		-	
Aroclor 1016			4 U	1.4 U	11 U	12 U	108 Y	125 U	0.4 U	3.6 U	3 U
Aroclor 1242			4 U	1.4 U	11 U	12 U	85 Y	125 U	0.4 U	3.6 U	3 U
Aroclor 1248			4 U	1.4 U	11 U	12 U	216 Y	250 U	0.4 U	3.6 U	3 U
Aroclor 1254			16	24	54	96	2,793	921	3	95	3 U
Aroclor 1260			13 P	6 P	38	53	342 Y	125 U	4 P	49	3 U
Aroclor 1221			4 U	1.4 U	11 U	12 U	42 U	63 U	0.4 U	3.6 U	3 U
Aroclor 1232			4 U	1.4 U	11 U	12 U	126 Y	184 U	0.4 U	3.6 U	3 U
Total PCBs	12	65	30 P	30 P	92	149	2,793	921	7 P	144	3 U
TPH (mg/kg)	· <u>-</u>	55					,,,,,,,				
Diesel		2,000 ^a	88	40	120	120	120	47	110	200	120 U
Motor Oil		2,000°	380	190	270	210	680	190	380	1.000	290
MOTOL OIL		2,000	300		es shown in bol	_	000	130	300	1,000	250

^aMTCA Method A soil cleanup level for industrial use.

Exceeds CSL or MTCA Method A soil cleanup level for industrial use.

U = Chemical not detected at reported concentration

Y = Chemical not detected at the reported concentration. Reporting limit raised due to chromatographic interference.

J = Chemical concentration is reported as estimate.

P = Chemical detected on both chromatographic columns, but values differ by >40% RPD with no obvious interference. Exceeds SQS

Table B-3b: Slip 4 drainage basin inline sediment sample results compared to Sediment Management Standards.

			-										
					1	_	own Flume Sa	•	5 .			_,	
	SQS	CSL	T1	T2	T5 ¹	T3	T4	T6	P1	P2	P3	P4	P5
			Flume 15'	Flume at S	Flume at S	Flume	Head of	MH100 u/s of E	Flume off	Flume off	Flume off	Flume off	Ditch at S
		(u/s of box culvert	Myrtle St	Myrtle St	upstream of S	flume	or E Marginal	of 8"	of 8" pipe near S	of 15" plugged	of 8" pipe at S Myrtle	Myrtle St
			cuiveit			Willow St		Wy S	plugged pipe	Willow St	piugged	St	
Date			3/24/05 S	3/24/05 S	3/24/05 S	3/25/05 S	3/24/05 S	3/25/05 S	3/25/05 S	3/25/05 S	3/25/05 S	3/24/05 S	3/24/05 S
TOC (percent)			3.92	1.43	1.17	2.25	8.71	2.68	0.711	2.47	5.27	0.773	6.86
roc (percent)			3.92	1.43	1.17	2.25	0.7 1	2.00	0.711	2.41	5.21	0.773	0.00
Metals (mg/kg DW)													
As	57	93	11	7 U	7 U	7 U	40	7 U	7 U	13	20	6 U	10 U
Cu	390	390	63.2	18.5	20.2	54.6	314 J	79.6	18	56.6	133	12.8	95.1
Pb	450	530	99	14	15	263	590 J	61	16	69	501	10	73
Hg	0.41	0.59	0.1	0.05 U	0.05 U	0.41	1.7	0.08	0.05 U	0.18	1	0.06 U	0.08
Zn	410	960	218	53.8	61.3	180	1,130	240	60.8	238	766	52.7	195
LPAH (mg/kg OC)													
Acenaphthene	16	57	7	1 U	2	17	8	3	3 U	2 U	2 U	2 U	23 U
Acenaphthylene	66	66	4	1 U	2	10	31	1 J	4	4	2 U	2	23 U
Anthracene	220	1,200	16	4	8	26	29	8	14	11	2	9	23 U
Fluorene	23	79	6	1 U	2 U	24	22	2	3 U	2 J	2 U	2 U	23 U
Naphthalene	99	170	8	1 U	2 U	4	28	2 U	3 U	2 U	2 U	2 U	23 U
Phenanthrene	100	480	115	3	6	276	126	28	14	10	10	18	23 U
HPAH (mg/kg OC)													
Benzo(a)anthracene	110	270	33	7	13	62	91	19	21	15	7	9	23 U
Benzo(a)pyrene	99	210	33	17	26	22	99	21	18	12	9	11	23 U
Benzo (b+k)fluoranthene	230	450	82	36	55	82	234	53	52	43	22	31	47 U
Benzo(g,h,i)perylene	31	78	15	6	11	9	29	8	7	5	4	4	23 U
Chrysene	110	460	59	11	18	67	96	28	32	26	10	21	12 J
Dibenzo(a,h)anthracene	12	33	6	2	4	2 J	11	2 J	3 U	1 J	2 U	2 U	23 U
Fluoranthene	160	1,200	161	14	22	271	207	60	75	49	21	63	15
Indeno(1,2,3-c,d)pyrene	34	88	17	6	10	10	34	8	8	5	4	4	23 U
Pyrene	1,000	1,400	82	9	15	147	161	45	42	34	18	30	17
Phthalates (mg/kg OC)													
Bis(2-ethylhexyl)phthalate	47	78	51	10	12	26	2	75	17	23	40	18	55
Butylbenzylphthalate	4.9	64	3	1 U	2 U	3 U	2 U	4	3 U	2 U	3	2 U	23 U
Diethylphthalate	61	110	2 U	1 U	2 U	3 U	2 U	2 U	3 U	2 U	2 U	2 U	23 U
Dimethylphthalate	53	53	2 U	1 U	2 U	3 U	2 U	2 U	3 U	2 U	2 U	2 U	23 U
Di-n-butylphthalate	220	1,700	2	1 U	2 U	3	2 U	2 U	3	3	3	2 U	23 U
Di-n-octylphthalate	58	4,500	2 U	1 U	2 U	3 U	2 U	2	3 U	9	3	2 U	23 U
PCBs (mg/kg OC)													
Aroclor 1016			2 U	1 U	0 U	124 U	3 U	1 U	2 U	3 U	493 U	1 U	3 U
Aroclor 1242			2 U	1 U	0 U	124 U	3 U	1 U	2 U	3 U	493 U	1 U	3 U
Aroclor 1248			2 U	1	1 J	124 U	17 J	3 U	4	9	493 U	1	3 U
Aroclor 1254			5	2 J	2 J	173	20	9	8 J	18	1,746	2 J	7 U
Aroclor 1260			4	2	2	124 U	6	6	5	5	493 U	2	22
Aroclor 1221			2 U	1 U	0 U	124 U	3 U	1 U	2 U	3 U	493 U	1 U	3 U
Aroclor 1232			2 U	1 U	0 U	124 U	3 U	1 U	2 U	3 U	493 U	1 U	3 U
Total PCBs	12	65	8	5	6	173	43	15	17	32	1,746	5	22
TPH (mg/kg)				-	-								
Diesel		2,000 ^a	36	21	19	84	2,300	120	14	63	250	8.9	1,600
Motor Oil		2,000 ^a	140	99	70	460	9,700	670	66	360	1,100	61	3,000
											•		

¹T5 is duplicate of T2.

S = Seattle field split

B = Boeing field split

Table B-4a: Slip 4 drainage basin catch basin and sediment sample results (dry weight).

	sqs	CSL	CB37	CB44	CB45	CB46	CB48	CB79	CB80	RCB49	S1
Date			6/22/04	12/8/04	12/22/04	12/22/04	2/20/05	11/9/05	11/9/05	11/8/05	11/9/05
TOC (percent)			4.74	24.6	9.74	10.4	1.57	6.42	2.68	4.06	3.1
Metals (mg/kg DW)											
As	57	93	20 U	12	20	20	12	30	6 U	20 U	11
Cu	390	390	173	142	6,320	5,660	51.5	207	85.2	85	69.9
Pb	450	530	250	123	481	396	343	114	29	65 79	73
		0.59	0.08	0.12	0.30	0.20	0.32	0.2	0.05 U	0.05 U	0.14
Hg 7-	0.41		1,220					758			172
Zn	410	960	1,220	524	3,420	3,530	657	758	268	357	1/2
LPAH (ug/kg DW)			470	440.11	700	4.000.11	400	00.11		00.11	05.11
Acenaphthene			170	140 U	760	1,600 U	130	90 U	66	20 U	35 U
Acenaphthylene			140 U	140 U	390 U	1,600 U	59 U	90 U	42 U	20 U	35 U
Anthracene			820	140 U	2,100	5,000	110	6,400	67 M	16 J	21 J
Fluorene			350	140 U	1,300	3,000	130	1,300	340	20 U	35 U
Naphthalene			140 U	140 U	390 U	1,600 U	470	160	89	20 U	35 U
Phenanthrene			3,000	220	17,000	35,000	3,100	1,700	1,100	68	78
HPAH (ug/kg DW)											
Benzo(a)anthracene			610	140 U	13,000	27,000	1,300	730	160	60	81
Benzo(a)pyrene			200	140 U	15,000	32,000	1,400	830	170	120	140
Benzo(b)fluoranthene			480	180	15,000	34,000	3,100	1,200	250 M	200	250
Benzo(k)fluoranthene			320	180	15,000	34,000	1,500	1,300	240 M	170	190
Benzofluoranthenes			800	360	30,000	68,000	4,600	2,500	490 M	370	440
Benzo(g,h,i)perylene			140 U	140 U	7,300	16,000	660	570	140	110	87
Chrysene			1,000	290	20,000	43,000	2,100	1,800	400	120	160
Dibenzo(a,h)anthracene			140 U	140 U	2,700	5,400	99	150	42 U	14 J	35
Fluoranthene			3,600	410	31,000	85,000	4,700	1,700	360	180	190
Indeno(1,2,3-c,d)pyrene			140 U	140 U	8,600	19,000	940	410	62	41	61
Pyrene			2,600	290	23,000	49,000	3,100	5,300	1,000	180	290
Phthalates (ug/kg DW)											
Bis(2-ethylhexyl)phthalate			1,600	3,910	8,800	30,000	88	120,000	38,000	1,400	5,500
Butylbenzylphthalate			1,300	430	490	1,600 U	59 U	90 U	1,800	1,100	140
Diethylphthalate			140 U	140 U	390 U	1,600 U	59 U	90 U	42 U	20 U	35 U
Dimethylphthalate			280	850	620	1,600 U	59 U	90 U	1,900	44	35 U
Di-n-butylphthalate			140 U	140 U	1,200	1,600 U	59 U	90 U	360 B	54 B	63 B
Di-n-octylphthalate			140 U	140 U	1,200	1,600 U	59 U	4,000	1,800	79	35 U
PCBs (ug/kg DW)											
Aroclor 1016			20 U	20 U	58 U	47 U	19 U	99 U	98 U	98 U	99 U
Aroclor 1242			20 U	20 U	58 U	47 U	19 U	99 U	98 U	98 U	99 U
Aroclor 1248			20 U	20 U	58 U	47 U	19 U	99 U	98 U	98 U	99 U
Aroclor 1254			20 U	49 Y	170	250	250	160	98 U	98 U	99 U
Aroclor 1260			20 U	180	300	430	77 Y	140	98 U	98 U	99 U
Aroclor 1221			20 U	20 U	58 U	47 U	19 U	99 U	98 U	98 U	99 U
Aroclor 1232			20 U	20 U	58 U	47 U	19 U	99 U	98 U	98 U	99 U
Total PCBs			20 U	180	470	680	250	300	98 U	98 U	99 U
TPH (mg/kg)											

Table B-4a: Slip 4 drainage basin catch basin and sediment sample results (dry weight).

	SQS	CSL	CB37	CB44	CB45	CB46	CB48	CB79	CB80	RCB49	S1
Diesel			180	85	950	1,900	98	6,000	1,200	68	280
Motor Oil			650	790	4,700	4,600	210	13,000	2,300	450	1,500

M = Estimated value. Analyte detected and confirmed by analyst, but spectral match patterns are low.

Exceeds SQS
Exceeds CSL or MTCA Method A soil cleanup level

U = Chemical not detected at reported concentration

Y = Chemical not detected at the reported concentration. Reporting limit raised due to chromatograhic interference.

P = Chemical detected on both chromatographic columns, but values differ by >40% RPD with no obvious interference.

Table B-4b: Slip 4 drainage basin catch basin and sediment samples compared to Sediment Management Standards.

	SQS	CSL	CB37	CB44	CB45	CB46	CB48	CB79	CB80	RCB49	S1
Date			6/22/04	12/8/04	12/22/04	12/22/04	2/20/05	11/9/05	11/9/05	11/8/05	11/9/05
TOC (percent)			4.74	24.6	9.74	10.4	1.57	6.42	2.68	4.06	3.1
Metals (mg/kg DW)											
As	57	93	20 U	12	20	20	12	30	6 U	20 U	11
Cu	390	390	173	142	6,320	5,660	52	207	85.2	85	69.9
Pb	450	530	250	123	481	396	343	114	29	79	73
Hg	0.41	0.59	0.08	0.12	0.30	0.20	0.32	0.2	0.05 U	0.05 U	0.14
Zn	410	960	1,220	524	3,420	3,530	657	758	268	357	172
LPAH (mg/kg OC)											
Acenaphthene	16	57	4	1 U	8	15 U	8	1 U	2	0.5 U	1 l
Acenaphthylene	66	66	3 U	1 U	4 U	15 U	4 U	1 U	2 U	0.5 U	1 l
Anthracene	220	1,200	17	1 U	22	48	7	100	3 M	0.4 J	1 、
Fluorene	23	79	7	1 U	13	29	8	20	13	0.5 U	1 l
Naphthalene	99	170	3 U	1 U	4 U	15 U	30	2	3	0.5 U	1 l
Phenanthrene	100	480	63	1	175	337	197	26	41	2	3
HPAH (mg/kg OC)											
Benzo(a)anthracene	110	270	13	1 U	133	260	83	11	6	1	3
Benzo(a)pyrene	99	210	4	1 U	154	308	89	13	6	3	5
Benzo(b)fluoranthene			10	1	154	327	197	19	9 M	5	8
Benzo(k)fluoranthene			7	1	154	327	96	20	9 M	4	6
Benzo(b+k)fluoranthenes	230	450	17	1	308	654	293	39	18 M	9	14
Benzo(g,h,i)perylene	31	78	3 U	1 U	75	154	42	9	5	3	3
Chrysene	110	460	21	1	205	413	134	28	15	3	5
Dibenzo(a,h)anthracene	12	33	3 U	1 U	28	52	6	2	2 U	0 J	1
Fluoranthene	160	1,200	76	2	318	817	299	26	13	4	6
Indeno(1,2,3-c,d)pyrene	34	88	3 U	1 U	88	183	60	6	2	1	2
Pyrene	1,000	1,400	55	1	236	471	197	83	37	4	9
Phthalates (mg/kg OC)											
Bis(2-ethylhexyl)phthalate	47	78	34	16	90	288	6	1,869	1,418	34	177
Butylbenzylphthalate	5	64	27	2	5	15 U	4 U	1 U	67	27	5
Diethylphthalate	61	110	3 U	1 U	4 U	15 U	4 U	1 U	2 U	0.5 U	1 l
Dimethylphthalate	53	53	6	3	6	15 U	4 U	1 U	71	1	1 l
Di-n-butylphthalate	220	1,700	3 U	1 U	12	15 U	4 U	1 U	13 B	1 B	2 [
Di-n-octylphthalate	58	4,500	3	1	12	15	4	62	67	2	1 l
PCBs (mg/kg OC)											
Aroclor 1016			0.4 U	0.1 U	0.6 U	0.5 U	1.2 U	1.5 U	3.7 U	2.4 U	3.2 \
Aroclor 1242			0.4 U	0.1 U	0.6 U	0.5 U	1.2 U	1.5 U	3.7 U	2.4 U	3.2 \
Aroclor 1248			0.4 U	0.1 U	0.6 U	0.5 U	1.2 U	1.5 U	3.7 U	2.4 U	3.2 \
Aroclor 1254			0.4 U	0.2 Y	1.7	2.4	15.9	2.5	3.7 U	2.4 U	3.2 \
Aroclor 1260			0.4 U	0.7	3.1	4.1	4.9 Y	2.2	3.7 U	2.4 U	3.2 \
Aroclor 1221			0.4 U	0.1 U	0.6 U	0.5 U	1.2 U	1.5 U	3.7 U	2.4 U	3.2 \
Aroclor 1232			0.4 U	0.1 U	0.6 U	0.5 U	1.2 U	1.5 U	3.7 U	2.4 U	3.2 \
Total Aroclor	12	65	0.4 U	0.7	4.8	6.5	15.9	4.7	3.7 U	2.4 U	3.2 l

Table B-4b: Slip 4 drainage basin catch basin and sediment samples compared to Sediment Management Standards.

	SQS	CSL	CB37	CB44	CB45	CB46	CB48	CB79	CB80	RCB49	S1
Diesel	2,000 ^a		180	85	950	1,900	98	6,000	1,200	68	280
Motor Oil	2,000 ^a		650	790	4,700	4,600	210	13,000	2,300	450	1,500

^aMTCA Method A soil cleanup level for unrestricted use.

U = Chemical not detected at reported concentration

Y = Chemical not detected at the reported concentration. Reporting limit raised due to chromatograhic interference.

M = Estimated value. Analyte detected and confirmed by analyst, but spectral match patterns are low.

J = Chemical concentration is reported as estimate.

Exceeds SQS
Exceeds CSL or MTCA Method A soil cleanup level